BASELINE MAPPING OF DISCONTINUITIES THROUGH NONDESTRUCTIVE TESTING

by

Daniel E. Coleman
Nondestructive Testing Level III
Dresser-Rand, Turbo Products Division
Olean, New York

and

Timothy A. Plesz
Senior Quality Assurance Engineer
Elliott Company
Jeannette, Pennsylvania

Daniel Coleman is one of two Nondestructive Testing (NDT) Level III's at Dresser-Rand Turbo Products Division in Olean, NY. He is responsible for all aspects of NDT including generation, review, interpretation, and approval of internal and external specifications, procedures, and contract requirements; qualification and certification of personnel; and generation, review, validation and approval of NDT techniques and procedures. Mr. Coleman served in the USAF for eight years performing NDT on various aircraft, and after receiving Master Instructor Certification, developed and conducted basic and advanced NDT courses at Chanute Technical Training Center. He worked for FMC Corporation as a Senior Quality Engineer, and in 1987 received National Level III Certification through the American Society for Nondestructive Testing in Liquid Penetrant, Magnetic Particle, Ultrasonic and Radiographic Testing.

Mr. Coleman has worked for Dresser-Rand since 1991, and has applied his experience to the prevention and detection of inherent, processing, and service related defects. He is an active member of the ASTM E7 Committee on NDT and is a member of ASNT, AWS, ASQC, and NMA.

Timothy A. Plesz is a Senior Quality Assurance Engineer for Engineered Apparatus (large turbines and compressors) and NDT Level III for Elliott Company in Jeannette, Pennsylvania. His responsibilities include quality planning for Engineered Apparatus; quality related activities with suppliers and associate plants; NDT Level III activities which include qualification and certification of personnel, development, review, and approval of NDT techniques and procedures.

Mr. Plesz has been involved with Nondestructive Testing for many years. He was certified to Level II in liquid penetrant, magnetic particle, ultrasonic and radiographic testing in 1977. He joined Elliott Company in 1978, has held various positions in the Quality Control and Quality Assurance Departments, including the position of Inspection Manager, before assuming his present position in 1987. Mr. Plesz is a graduate of the University of Pittsburgh (1970) and holds national Level III Certification through ASNT in Liquid Penetrant and Magnetic Particle Testing. He is a Lead (Quality) Auditor for Elliott Company and, also, holds national certification through ASQC as a Certified Quality Auditor (CQA). He is member of ASNT and ASQC.

ABSTRACT

Manufacturers in the compressor industry have experienced an increasing interest by their customers to be able to compare the as manufactured condition of critical components to their subsequent condition over time in service. Through the use of nondestructive testing, combined with baseline mapping of benchmark indications, this can be accomplished on specific components under controlled conditions. The purpose of this presentation is to discuss the following areas under which baseline mapping can be successfully accomplished.

- Nondestructive Testing (NDT)
- Liquid Penetrant
- Magnetic Particle
- Ultrasonic
- Radiography
- Visual
- Baseline Mapping
- Common Mapping Methods
- Types of Maps
- Mapping Variables
- Mapping Requirements
- Benefits Vs Cost

NONDESTRUCTIVE TESTING

Nondestructive testing is a term used to describe a variety of methods employed to determine the physical soundness of an item without damaging or destroying the item being tested. The American Society for Nondestructive Testing, Inc. (ASNT) publishes qualification and certification guidelines for nine nondestructive testing methods.

- Liquid Penetrant Testing (PT)
- Magnetic Particle Testing (MT)
- Ultrasonic Testing (UT)
- Radiographic Testing (RT)
These materials are called paramagnetic. A subdivision of paramagnetic materials is a group of materials known as ferromagnetic.

Ferromagnetic materials are those materials strongly attracted to a magnetic field.

Magnetic particle testing is a nondestructive testing method used for locating discontinuities at or near the surface of ferromagnetic materials.

Magnetic particle testing depends upon establishing a magnetic field within an item. Discontinuities that lie approximately transverse to the direction of the magnetic field will cause a magnetic leakage field at and above the surface of the item. This leakage field is then detected by applying small ferromagnetic particles over the surface. Some of these particles will be held by the leakage field. These magnetically held particles will indicate the location, shape, and size of the discontinuity.

Magnetic particle testing can be used on impellers made from magnetic materials. Some of the advantages and disadvantages of magnetic particle testing are:

Advantages

- It is the best method for detecting surface cracks on ferromagnetic materials.
- It will detect indications filled with foreign matter.
- Extensive precleaning is usually not necessary.
- Works through thin nonmagnetic coatings such as paint and plating.
- It lends itself to automation.
- Equipment can withstand shop environment.

Disadvantages

- It will only work on ferromagnetic materials.
- Not an expedient method for doing large volumes of small parts.
- Odd-shaped parts sometimes distort the magnetic field.
- Magnetic field must be applied in a direction that will be transverse to the indication.
- Demagnetization is often necessary.
- Care must be taken to avoid arc strikes.
- Skilled personnel are required to evaluate indications.

ULTRASONIC TESTING

Ultrasonic testing is a nondestructive testing method for inspecting materials by injecting high frequency sound waves into or through materials. The high frequency sound waves are used to detect surface and subsurface indications.

An ultrasonic transducer is used to transmit and receive these sound waves. The transducer converts the mechanical energy into electrical energy.

The transducer is connected to an electronic device that:

- Generates the electronic signal.
- Receives the electronic signal.
- Displays the electronic signal so an evaluation of that signal can be made.

In sound material, the energy reflects off the back surface and returns to the transducer. In material with a discontinuity, some of the original energy is reflected by the discontinuity and returns to the transducer. The ultrasonic unit uses this difference in the amount of sound energy returned and the elapsed time to locate the discontinuities.
discontinuity. This is a very simplified description of the basic principal of ultrasonic testing.

There are many variables that affect ultrasonic testing. Therefore, it cannot be stressed enough that it is essential for the UT operator to have the training and experience necessary to perform the required ultrasonic tests.

Ultrasonic testing can be used on shaft forgings. Some of the advantages and disadvantages of ultrasonic testing are:

Advantages

- High sensitivity for detection of small discontinuities.
- Greater accuracy in determining the location of discontinuities.
- Penetrating power allows examination of thick items.
- Electronic operation allows fast response, automated testing and easily adapted for printing permanent records.
- Allows volumetric scanning.
- Contact testing allows testing of large items and uses a minimum of instrumentation.
- Portability

Disadvantages

- Extensive training and experience is required for the operators.
- Extensive technical knowledge is required for developing UT procedures.
- Unfavorable geometry, parts that are rough, irregular in shape, small or thin are very difficult to inspect.
- Nonhomogeneous material or undesirable internal structure like grain size or inclusions and defect orientation may be to such extent that the item cannot be tested ultrasonically.
- Large number of accessories required for immersion testing which also limits the size of the article that can be immersion tested.
- Reference standards are needed for sizing defect and for calibrating equipment.

RADIOGRAPHIC TESTING

Radiography is a nondestructive testing method that uses electromagnetic energy such as X-rays or gamma rays to examine material for internal quality.

Radiography is based on the differential absorption of the penetrating radiation by the object being tested.

Differences in thickness, and material composition such as density or absorption characteristics cause different portions of a test piece to absorb different amounts of radiation. The radiation that passes through the test piece can be recorded on film, photosensitive paper, viewed on a screen or monitored by various electronic equipment. The basic process is shown in Figure 1.

More radiation passes through the areas that are thin or that contain voids. This unabsorbed radiation exposes the emulsions in the film. When developed, the corresponding areas of the film are darker.

Radiography can detect indications that create a thickness variation as compared to its surrounding area. The thickness variation caused by indications that are oriented parallel to the radiation beam and, in general, have a two percent or more absorption difference can be detected.

As in UT, one of the most important factors is to have trained experienced personnel perform the work.

Figure 1. Typical Radiographic Inspection Showing Radiation Source, Test Piece, and Film Placement. Also shown are the emission and spread of radiation, penetration of the test material, and projection of images onto the film.

Radiography can be used on butt welds on fabricated casings. Some of the advantages and disadvantages of radiography are:

Advantages

- Can be used on most materials including ferrous, nonferrous, nonmetallic, and composites.
- Can detect internal discontinuities.
- When required, can provide a permanent record.
- Can reveal assembly errors.

Disadvantages

- Impractical to use on parts with complex geometry—when source, part, and film cannot be properly orientated, RT is of no use.
- Both sides must be accessible.
- Requires large capital outlay if purchasing equipment.
- Expensive if testing thick items that require high energy equipment.
- Mandatory safety regulation compliance is costly and time consuming.
- Improper use or disregard of safety regulations leading to overexposure can cause blood cell and skin damage. Large overexposure can cause severe disability and even death.
- Certain flaws are difficult to detect—cracks transverse to the radiation beam, small inclusions, and microporosity. Laminations are nearly impossible to detect due to their unfavorable orientation.
- Extensive training and experience are required for operators.

VISUAL TESTING

Unaided visual inspection has been and still is an important nondestructive testing method. Visual testing is the careful examination of a surface by experienced personnel knowledgeable in the product they are inspecting. Visual testing is performed under
proper lighting conditions in order to identify surface imperfections. Keep in mind that imperfections are not necessarily defects. Some specifications require that visual testing be aided by a five times or ten times magnifying glass. However, most visual testing is unaided. Personnel certified to perform nondestructive testing are required to pass an annual eye examination to assure that their normal or corrected vision meets minimum requirements.

Visual testing is also a convenient preliminary test. Many NDT specifications require a visual inspection before performing the required NDT.

Visual testing is usually required before most fluorescent type NDT inspections since they are performed in a darkened area. Visual testing can be used on diaphragms. Some of the advantages and disadvantages of visual testing are:

Advantages
- Inexpensive
- No special equipment
- Can be used to detect surface contamination like slag or rust.
- Adaptable for use with borescopes, fiber optics and cameras.

Disadvantages
- Slow and tedious.
- Requires complete attention by the inspector.
- Human factor is involved.

BASELINE MAPPING

Baseline mapping can be defined as the permanent record of indications resulting from the nondestructive testing of an item. This record can then be used as a future reference for subsequent NDT of the same item. Baseline mapping can be thought of as creating a benchmark, or starting point, that can be referred to at a later date. The baseline map would be used to compare the as manufactured condition of an item to the present condition of the item.

The comparison will then show what has happened to the original indications after the item has been subjected to service conditions.

The evaluation of the results of the comparison can help concern the disposition and serviceability of that item.

The most common NDT methods used for baseline mapping are:
- Visual Testing (VT)
- Liquid Penetrant Testing (PT)
- Magnetic Particle Testing (MT)

The advantages and disadvantages of each method were discussed earlier. Their use for baseline mapping is usually:
- VT on finished parts
- PT on finished parts both magnetic and nonmagnetic materials
- MT on semifinished and finished parts made of magnetic materials

BASELINE MAPPING—APPLICABLE COMPONENTS

Baseline Mapping is used in conjunction with in-service inspections of critical parts during a routine shutdown.

As such, baseline mapping is used on the following critical components:
- Casings
- Rotor assemblies—including impellers, turbine blades, and any exposed areas on shafts.
- Diaphragms

Maps will provide information on relevant inherent and processing discontinuities. Rotor assembly maps furnish information on all accessible areas of items containing relevant indications that make up the rotor assembly.

Certain items like impellers may be mapped individually before they are assembled on the rotor, but keep in mind that mapping the individual component may provide information that is different than mapping the assembled component. Why it may provide different information has to do with the variables of mapping, which will be discussed later.

COMMON MAPPING METHODS

To be successful, the mapping method should be carefully selected based on the amount of detail required and subjectivity allowed. In addition, basic requirements must be met to ensure that the resultant baseline maps are of subsequent use and value. To ensure the usefulness of a baseline map traceability of the component to the map is critical, without traceability the map will be of no use or value. In addition, an inspection plan should be developed and include as a minimum, the inspection procedure, mapping method with instructions, and standardized documentation and records. The inspection plan should be reviewed, and approved by the manufacturer and customer prior to implementation. This will assure consistent inspection, mapping method, and documentation.

A major concern is the accuracy of interpreting indications and determining their relevancy (relevant vs nonrelevant indications), only relevant indications should be recorded and mapped (Table 1). Records/maps require accurate classification, dimensioning, and location/orientation of relevant indications to assure the map can be used as a subsequent engineering tool (Figure 2). In order to assure accurate interpretation of maps, the part and map should be identified with a starting point.

Table 1. Interpretation of Common Indicators Identified through Nondestructive Testing.

<table>
<thead>
<tr>
<th>Interpretation Through Visual, Magnetic Particle and Liquid Penetrant Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Indications</td>
</tr>
<tr>
<td>Cleanliness</td>
</tr>
<tr>
<td>Surface roughness</td>
</tr>
<tr>
<td>Material geometry</td>
</tr>
<tr>
<td>Nonrelevant Indications</td>
</tr>
<tr>
<td>Material geometry</td>
</tr>
<tr>
<td>Material permeability</td>
</tr>
<tr>
<td>Over magnetization</td>
</tr>
<tr>
<td>Relevant Indications</td>
</tr>
<tr>
<td>Fabrication</td>
</tr>
<tr>
<td>Cracks</td>
</tr>
<tr>
<td>Lack Fusion</td>
</tr>
<tr>
<td>Undercut</td>
</tr>
<tr>
<td>Porosity</td>
</tr>
<tr>
<td>Inclusions</td>
</tr>
</tbody>
</table>

Discontinuities - Relevant indication meet criteria - component considered candidate for mapping.

Defects - Relevant indications exceed criteria - indications rejected.
Figure 2. Typical Baseline Mapping Record Identifying Critical Information Required to Be Conducted, Including a Sketch (Map) of the Test Piece.

TYPES OF MAPS

The selection of a specific type of map should be based on mapping capabilities and degree of detail required. The sketch is the most common type of map used today, however, it must be emphasized that this method is subjective and highly dependent on the artistic skills and communication ability of the person generating the map. With the use of sketches, special attention should be given to the following:

- Identify relevant indication with a unique method (numbers, letter, etc.).
- Provide full view map of the component showing the location and orientation of relevant indications.

Another type of map is the photographic map, which is less subjective; however, it is typically difficult to produce, due to limited access to specific areas and when using fluorescent inspection methods. High magnification and comparator scales are required to size relevant indications on the photograph. Special attention must be given to the storage and reproduction of photographs. As with sketches, special attention should be given to the following:

- Provide full view photographs of the component showing the location and orientation of relevant indications.
- Identify relevant indications with a unique method (numbers, letter, etc.).

The third type of map is the overlay which is capable of providing a full size map of the components; however, it is typically limited to external surfaces of small components with simple geometry. As with sketches, special attention should be given to the following:

- Identify relevant indications with a unique method (numbers, letter, etc.).
- Must provide full component overlay identifying location and orientation of relevant indications.

MAPPING VARIABLES

Repeatability and reliability of the inspection procedure is critical. Procedures required for individual components can be different from procedures required to inspect the assembled component due to the assembled geometry. When different procedures are used for the initial inspection and subsequent in-service inspections, repeatability and reliability variations can occur, resulting in potential conflict in inspection results. The technique used to produce the baseline map must be the same as used for subsequent inspections. Variations in equipment, materials (visible vs. fluorescent), and equipment performance can induce variability that can also adversely affect the repeatability and reliability of the inspection. As a minimum, the original procedure, same type of materials or equivalent, calibrated/verified equipment, and qualified/certified inspection personnel must be used to reduce the effect of these variables. It is also critical that the inspection technique have the sensitivity to detect service-related indications (Table 1).

Another major variable is the human element. It is critical that the personnel performing inspections, interpreting inspection results, and generating maps be familiar with the components fabrication process, material type, and geometry such as in welded configurations. Personnel must be able to accurately distinguish between false, non-relevant and relevant indications.

For the purpose of identifying and mapping, it is critical that personnel performing the initial and subsequent inspection be qualified and certified to classify types of relevant indications that are identified through inspection as inherent, processing and service discontinuities.

MAPPING REQUIREMENTS

When a customer requires mapping, the customer must be prepared to work closely with the manufacturer for the results to be meaningful.

The customer and manufacturer must agree on pre-established mapping requirements. The mapping requirements that must be agreed upon include:

- What parts require mapping?
 - As stated before this is usually the casing, diaphragm and rotor.
- What NDT method will be used?
 - PT, MT, or VT?
- What NDT technique will be used for each method?
 - PT—Visible dye or fluorescent?
 - Solvent removable or water washable?
 - MT—Prods, coils, clamps, or yoke?
 - Visible or fluorescent?
 - Dry powder or wet particles?
- Is the NDT reasonable to perform based on manufacturer's capability, limitations of the particular NDT method or size of the part?
 - A large compressor casing might be difficult to inspect using wet fluorescent MT because the casing must be rested and inspected in a dark area.
- What type and size of relevant indications will be mapped?
• The manufacturer will have either a procedure or recommended guidelines that address this.

After the above requirements are established and agreed upon, they become part of the contract and, as stated previously, it is essential that these requirements be duplicated during subsequent NDT by the owner.

If the customer and manufacturer work together, the above requirements can be established and meaningful results obtained. The following is a summary of baseline mapping requirements from customer request to implementation.

BASELINE MAPPING REQUIREMENTS

• Customer request for baseline mapping
• Review current inspection technique to determine repeatability during inservice inspection
 • Approve or modify current technique as required
 • Select mapping method
 • Generate inspection plan including
 • Inspection technique
 • Mapping method and instructions
 • Standardized documentation
 • Review and approve plan

• Enter approved plan into the contract
• Implement baseline mapping in accordance with approved inspection plan

Since mapping is not routinely done and since it is very time consuming, it follows that mapping is an added expense that shall be agreed upon during contract negotiations.

BENEFITS VS COST

The use of baseline mapping can be of great benefit as an engineering tool. However, if not properly planned and implemented, it can be costly, generate conflict, and result in information that is not accurate or of use. Baseline mapping should be considered only for critical and highly stressed components or areas of components. Components with complicated geometry require maps with greater detail resulting in increased time and cost.

One of the benefits of baseline mapping is the documentation of the benchmark condition of an as manufactured component which can subsequently be compared to the components condition after time in service. Another benefit is in providing documentation to assist in determination of indication propagation rates that can be used to develop product confidence levels and possibly extend product life. Maps can also be useful in establishing in service maintenance and inspection schedules.