TABLE OF CONTENTS

PLANNING TURBOMACHINERY OVERHAULS AND DOCUMENTING THE RESULTS 1
John D. Houghton, Manager, Mechanical Equipment, Shell Oil Company, Deer Park, Texas

ELECTROMAGNETIC SHAFT CURRENTS AND DEMAGNETIZATION ON ROTORS
OF TURBINES AND COMPRESSORS .. 13
John S. Sohre, Consultant, Ware, Massachusetts; Paul I. Nippes, President,
Nippes Professional Association, Woodbridge, New Jersey

THE STATE OF THE ART OF HIGH SPEED OVERHUNG CENTRIFUGAL
COMPRESSORS FOR THE PROCESS INDUSTRY .. 35
Hans Pennink, Chief Engineer, Turbonetics Incorporated, Latham, New York

DESIGN AUTOMATION OF CENTRIFUGAL COMPRESSORS 47
Tadashi Kaneki, Engineer; Eiji Yokoyama, Assistant Chief Engineer; Tsuchiura Works,
Hitachi, Ltd., Tsuchiura, Ibaraki, Japan

HIGH SPEED AND LARGE CAPACITY COMPRESSOR-DRIVING TURBINES
FOR CHEMICAL PLANTS ... 59
Makoto Teramoto, Kazuso Katayama, Masanori Fujimuru, Hiroshima Shipyard
and Engine Works, Mitsubishi International Corporation, Hiroshima, Japan

AN INVESTIGATION OF THE FLEXURAL VIBRATION BEHAVIOR OF
SLENDER ROTORS IN DRUM-TYPE CONDENSING TURBINES 71
Rolf Sparmann, Head, Development Section, Industrial Turbine Division, Siemens AG,
Wesel, West Germany

PRACTICAL CONSIDERATIONS FOR A RATED SPEED SHOP BALANCE 87
Edward A. Bulanowski, Jr., Chief Engineer, Solid Mechanics, Research and Advanced Product
Development, Delaval Turbine Inc., Trenton, New Jersey

COMPRESSOR RESPONSE TO SYNCHRONOUS MOTOR STARTUP 95
Gerald K. Mruk, Analytical Engineer, Joy Manufacturing Company, Buffalo, New York

SUBSYNCHRONOUS VIBRATION IN A LARGE WATER FLOOD PUMP 103
James E. Corley, Supervisor, Rotating Equipment, Arabian American Oil Company,
Dhahran, Saudi Arabia

TRANSIENT ANALYSES OF SYNCHRONOUS MOTOR TRAINS 111
Fred R. Szenasi, Senior Research Engineer; Walter W. von Nimitz, Director, Industrial Applications Department; Applied Physics Division, Southwest Research Institute,
San Antonio, Texas

TURBOMACHINERY PROBLEMS — LUBE AND SEAL SYSTEM REVISITED 119
Royce N. Brown, Consulting Engineer, Dow Chemical U.S.A., Houston, Texas

PARTICULAR PROBLEMS OF STEAM TURBINE LUBRATION 125
Walter E. Enz, Manager, Turbine Controls; Alfred Hausermann, Chief Turbine
Design Engineer; BBC Brown, Boveri & Company, Ltd., Baden, Switzerland

THE ROLE OF HYDRAULIC BALANCE IN MECHANICAL PUMP SEALS 133
Gordon S. Buck, Jr., Engineer, MO's Engineered Repair Services, Denham Springs, Louisiana

USING MODIFIED ACOUSTIC EMISSION TECHNIQUES FOR
MACHINERY CONDITION SURVEILLANCE ... 139
Heinz P. Bloch, Engineering Associate; Robert W. Finley, Systems Engineer; Exxon
Chemical Company U.S.A., Baytown, Texas

IMPROVING COOLING TOWER FAN SYSTEM EFFICIENCIES 159
Robert C. Monroe, Manager, Research and Development, Hudson Products Corporation,
Houston, Texas

THE OPERATING CHARACTERISTICS OF GEAR-TYPE COUPLINGS 167
Gerhardt Pahl, Professor and Engineer, Darmstadt Technical University,
Darmstadt, West Germany
TUTORIUM ON TURBOMACHINERY LUBRICATION

PLANT LUBRICATION .. 177
Allen M. Clapp, Supervisor, Lubrication Technical Services, Dow Chemical U.S.A.,
Freeport, Texas

LUBRICATION SYSTEMS FOR TURBOMACHINERY ... 189
Fredrick B. Wilcox, Staff Engineer-Lubrication, Shell Oil Company,
Houston, Texas

DISCUSSION LEADERS .. 193

ADVISORY COMMITTEE ... 199

EXHIBITORS ... 203

GAS TURBINE LABORATORIES ... 209

GAS TURBINE LABORATORIES PERSONNEL .. 211