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Unstable operation of a synthesis gas compressor

• An example of unexpected dynamic response

• Results of an analysis using modeling of the complete 

compressor installation

1. Lay-out of the compressor system

2. Description of the problem

3. Measurements

4. Analysis by means of a computer model

5. Conclusions



February 13 - 16, 20111st Middle East TurboMachinery Symposium3

Lay-out of the compressor system
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• 3-stage compressor, with all stages on a single shaft

• Suction pressure speed controlled

• Suction pressure 23 bar; Discharge pressure 133 bar

• Nitrogen flow is controlled to have a constant 3:1 hydrogen-

nitrogen ratio
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Problem description

• Compressor operated stable for rated capacity

• Compressor started surging far away from the surge point, 

limiting the operating envelope

• No operation possible at part load

• At 90% capacity pressure variations occurred that increase until

surge occurs

• Temporary solution was to apply a large surge margin, resulting 

in a considerable reduction of part load efficiency
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Analysis - Measurements
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Pressure variations start to grow autonomously

→ not a classical surge phenomenon, but a system instability
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Analysis – Measurements interpretation

• Each stage has a phase shift of approximately 60 degrees

• Consumed power varies for each stage

• The sum of the power variations even out to a large extent:

• When stage 1 requires more power the other stages require less

T im e [s ]

∆P  [ba r]

1s t s tage
2nd  s tage
3 rd  s tage



February 13 - 16, 20111st Middle East TurboMachinery Symposium7

Analysis – Computer model

A  model has been built to analyse this using PULSIM, which has building blocks for:

• Fluid machinery: compressor stage, rotor, driver

• Pipe system: pipes, volumes, …

• Controllers

dP - flow 1st stage
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Approximated dP - flow curve

A negative, B~ RPM and C~ RPM2
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Analysis - Response to artificial excitation

Response curve flow pulsation @ suction
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Conclusion: system is marginally stable for 85% load
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Analysis - Causes of unstable behavior

1. Reduced compressor impedance at lower flows

dP - flow 1st stage
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• Idealised curve

∆P=A.Q2+B.Q+C

• Compressor impedance

Rc= -d ∆P/dQ= -2.A.Q-B

• Surge for Rc<0 or

Q<-B/(2.A)

• @90% load the 

compressor impedance is a 

factor of 2 smaller than

@100% load



February 13 - 16, 20111st Middle East TurboMachinery Symposium10

Analysis - Causes of unstable behavior

1. Reduced compressor impedance at lower flows

2. Exchange of power between stages via rotor
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Analysis - Causes of unstable behavior

1. Reduced compressor impedance at lower flows

2. Exchange of power between stages via rotor

3. Poor controllability of suction pressure control: small changes in 

suction pressure lead to large variations in flow

4. Variation of molecular weight caused by pulsations

Flow variations at mixing point cause change of composition that

travels with the flow velocity to the compressor. Travel time 7 

seconds or ca. 3.5 period of instability cycle.

  70 m100 m  

hydrogen

nitrogen
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Solution - Stabilising the system

1. Improve characteristic of   

first stage (steeper)

2. Flow control instead of 
suction pressure control 
(cascade with suction 
pressure control)

3. Reduce variation of 
molecular weight (mixing 
vessel or hydrogen flow 
control)

4. Dampen the resonance: 
orifice plate or control valve 
in hydrogen line

Difficult to achieve in an existing system

The orifice was actually implemented, 

and the system operated stable
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Concluding remarks

1. Unexpected instabilities can occur in a compressor installation as a result of 

pipe system and compressor dynamics

2. Low pressure loss systems with multi-stage compressors are susceptible for 

instabilities

3. Compressor head-flow curves are not as smooth as presented here. Especially 

‘multiple wheel stages’ show deviations from the idealised quadratic curves. 

Differences exist between ‘design’, ‘test’ and ‘real’ curves.

4. Analysis of the compressor control during the design stage is recommendable. 

Powerful simulation tools are available to analyse the dynamics and control. 

However, this is no replacement for understanding what is going on in the 

system.

5. Surge cycles itself can also be simulated nowadays, i.e. the unstable behavior.


