Evaluation of LNG Train Operation Resulting from Refrigeration Compressor Re-wheel

Ameer Khader
Senior Engineer – Rotating Equipment

Nicholas White
Senior Advisor – Machinery & Reliability

RasGas Company Limited
Ameer Khader is a Senior Rotating Equipment Engineer, RasGas, Qatar, seconded from ExxonMobil. He looks after Train 3, 4, 5 and AGI Asset machinery surveillance and troubleshooting. Prior to joining RasGas, he supported the machinery programmes at Hibernia Oil Platform and Sable Gas Project in Eastern Canada. Ameer holds a Bachelors of Science in Mechanical Engineering from Texas A&M University.

Nicholas White is the Machinery and Reliability Senior Advisor with RasGas, Qatar. His responsibilities include asset rotating machinery surveillance, trouble shooting and reliability improvement. He has previously held senior engineering positions in turbomachinery design for Alstom Power and Kellogg Brown and Root.
Abstract

- In an LNG production plant, multiple propane (PR) refrigeration compressor failures since commissioning led to re-wheeling.
- PR refrigeration system was not considered to be the main bottleneck, nevertheless improved production rates were realized.
- Full refrigeration system machinery evaluation highlighted the main uplift to be a result of improvement in the Mixed Refrigerant (MR) system.
- Thermodynamic coupling of upgraded PR loop with MR loop resulted in added capacity to MR loop.
PR/MR Process Overview

- Propane System
- Mixed Refrigerant System

LNG
System Overview

LP/MP MR String

F7, DLN1
79 MW Site Rated

LP MR Compressor

MP MR Compressor

Helper Motor
12 MW

HP MR/PR String

F7, DLN1
79 MW Site Rated

PR Compressor

HP MR Compressor

Helper Motor
12 MW
String design capacity

LP MR Compressor
- Poly Head: 150 kJ/kg
- Mass Flow: 1.2 Tons/hr
- Power: 60 MW
- 4 impeller sections straight through

MP MR Compressor
- Poly Head: 60 kJ/kg
- Mass Flow: 1.2 Tons/hr
- Power: 23 MW
- 4 impeller sections straight through

HP MR Compressor
- Poly Head: 50 kJ/kg
- Mass Flow: 1.2 Tons/hr
- Power: 20 MW
- 5 impeller sections straight through

Propane Compressor
- Poly Head: 125 kJ/kg
- Mass Flow: 2 Tons/hr
- Power: 55 MW
- 4 sections side loaded
MR Compressors
Performance Influence

- Overall performance maps do not follow fan laws
- Significant head range for a tight speed range
Propane Compressor Performance Influence (Pre Re-wheel)

- Overall performance maps do not follow fan laws
- Significant head range for a tight speed range
Background

Propane Machinery
- Historical compressor impeller failures
- Compressor operated close to overload
- Abundance of power within string
- Compressor re-wheeled to address overload concerns

MR Machinery
- All three compressors operate satisfactorily
- LP/MP MR string use maximum available power
- LP/MP MR string power is plant bottleneck
Propane Compressor Failures

- Narrow choke margin during winter months
- History of Sections 3 and 4 impellers failure during operation
Propane Compressor Re-wheel

- Redesigned all of sections 3 & 4 and section 2 return channel
- Reused section 1 & 2 impellers
Propane Compressor Re-wheel

- Increase sections 3 & 4 operating range
- Maintained design operating point in all sections
Effect of Re-wheel on Refrigeration Systems

Summer 2013

<table>
<thead>
<tr>
<th></th>
<th>Avg Jun - Sep</th>
<th>vs 2011 & 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR Mass Flow</td>
<td></td>
<td>4.1%</td>
</tr>
<tr>
<td>PR Mass Flow</td>
<td></td>
<td>1.6%</td>
</tr>
<tr>
<td>Total MR Head</td>
<td></td>
<td>-2.3%</td>
</tr>
<tr>
<td>MR String Power</td>
<td></td>
<td>0.4%</td>
</tr>
<tr>
<td>PR String Power</td>
<td></td>
<td>1.7%</td>
</tr>
<tr>
<td>HP MR Power</td>
<td></td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Overall 2013

<table>
<thead>
<tr>
<th></th>
<th>vs 2011 & 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR Mass Flow</td>
<td>2.4%</td>
</tr>
<tr>
<td>PR Mass Flow</td>
<td>1.3%</td>
</tr>
<tr>
<td>Total MR Head</td>
<td>-2.3%</td>
</tr>
<tr>
<td>MR String Power</td>
<td>0.1%</td>
</tr>
<tr>
<td>PR String Power</td>
<td>1.1%</td>
</tr>
<tr>
<td>HP MR Power</td>
<td>0.8%</td>
</tr>
</tbody>
</table>
Post Re-wheel Analysis: Propane Compressor

• Larger Choke Margin
 → Increase in speed
 → Higher PR flow rate
Post Re-wheel Analysis: MR System

- Lower MR turbine speed → Lower HP suction pressure
- Same Absorbed Power → High MR flow rate
Post Re-wheel Analysis: MR Compressors
Post Re-wheel Analysis: String Power

MR String Power (Normalized)

C3 String Power (Normalized)

> 80% of time
Conclusion

• Analysis of system wide machinery is necessary to understand full effects of re-wheeling compressors on total plant production

• Plant bottleneck can be influenced by modifying coupled systems

• Selective investments are better made when whole system is assessed

• Understanding owner’s compressor characteristics helps in realizing effects of changing operating parameters
Questions?