

Reliability Improvement for Turboexpander-Compressor System

Marc S. LeDuc Atlas-Copco Mafi-Trench Co. Hassan A. Mazi Saudi Arabian Oil Company

© Copyright 2012, Saudi Aramco. All rights reserved.

Outline

- Introduction
- Turboexpander-Compressor Challenges
 - 1. Buffer Gas Excessive Flow
 - 2. Expander Speed Limit
- Execution Optimization
- Lessons Learned
- Concluding Remarks

Hawiyah NGL Plant

- Plant was commissioned in 2009.
- Three trains to recover Ethane-rich NGL.
- Each train has two 50% turboexpander-compressors.
- Reliability of EC system directly impacts production and operating economics.

Turboexpander-Compressor System

Mechanical Center Section

Bearing Housing

Performance Assessment Survey

The turboexpander exhibited three problems:

- 1. Buffer gas excessive flow
- 2. Wheel imbalance
- 3. High magnetic bearing current

(Bearing Housing) (Compressor) (Expander)

Challenge 1: Buffer Gas Performance

Buffer Gas Functions:

- Rejects heat generated by magnetic bearings and shaft windage.
- Protects auxiliary bearings from process gas.

Buffer Gas = Sealing Gas + Cooling Gas

Challenge 1: Description

During Pre-Commissioning:

- Piping vibration at seal gas supply valves.
- → Increased valves and piping from 1" to 2" for stiffness.

Subsequent Performance Problems:

- High dP across on-skid seal gas filters.
- 2. Potential machine trip due to low seal gas dP.

Challenge 1: Analysis and Solution

Problem Analysis:

 Cooling gas flow could be reduced, such that bearings temperatures remain < 230 °F.

Implemented Solution:

 Reduced the size of internal orifices to 1/8" to restrict the cooling gas flow.

Challenge 1: Realized Enhancements

- Seal gas consumption was optimized by internally reducing orifice diameters.
- Filter cartridge life was increased due to reduced seal gas flow.
- Turboexpander trip due to low seal gas supply differential pressure was eliminated.

Challenge 2: Expander High Current

- Some machines could not be placed back online after planned shut down.
- Once started up, machines exhibited high magnetic bearing current on expander side.
- When the machine was shut down, high current still persisted.
- Lateral shaft translation by AMB control system was necessary to restore magnetic bearing parameters to acceptable levels.

Challenge 2: Internal Inspection

Challenge 2: Analysis

Challenge 2: Screw Failure Analysis

Old vs. New Screws

Cap Screw Design

Socket-head

Flanged-head

Fillet between head and Shank

Small radius	Larger radius
	Beveled washer

Material

A320-L7	A286
	个 60% tensile
	个 500% fatigue

Safely Removed Rotating Assembly

Readiness and Execution

Secure shutdown windows and resources – User Role

Expedite material manufacturing/delivery – Manufacturer Role

Findings Summary

Lessons Learned

User's Perspective

- Conduct joint review of equipment/piping layout by manufacturer and user prior to construction approval.
- Implement Management of Change for modifications made at construction phase.

Manufacturer's Perspective

- Develop analytical tools to more accurately determine pressures acting on IGV components.
- Redefine fastener selection process to provide a better safety margin.

Lessons Learned - Continued

Manufacturer's Perspective

- Modified expander follower design:
 - a) Adjusted component geometry to ensure mounting stability of IGV assembly members.
 - b) Improved mounting screw material and geometry.

Original Design

Modified Design

Concluding Remarks

- Turboexpander availability was boosted from 65% to 98%
- Active magnetic bearings have outstanding resistance to major rotor imbalance events.
- Corrective actions effectiveness was confirmed based on inspection findings.
- The key to success was outstanding coordination for
 - Shutdown windows
 - Spare parts and material manufacturing
 - Technical and field support

