

Hydraulic Upgrade of Hot Water Circulation Pumps in a District Heating System

Erik Roosch & Frank Visser*

*Presenter

Contents

- Introduction
 - Particulars
 - Objective
- First Design
 - Design Details
 - Hydraulic Performance
 - Onsite Vane Pass Vibration
- Second Design
 - Design Details
 - Hydraulic Performance
- Concluding Remarks

Introduction - Particulars

District heating circulation pumps (2 blocks):

- Single stage
- Double suction
- Between bearing
- Radial split casing (API 610 BB2)
- Side-side nozzles
- Variable speed(1000 1500 r/min)

Introduction - Particulars

Conditions of service:

- Pre-upgrade: 500 1500 m³/h @ 60 m
- Requested for upgrade: 720 2400 m³/h @ 80 m

Normal duty: 1750 m³/h @ 35 m (1000 r/min)

Max. (design) duty: 2400 m³/h @ 80 m (1490 r/min)

- Fluid: Hot pressurized water (70 140 °C)
- Suction pressure: 6.9 11 bar

Introduction - Particulars

Introduction - Objective

Objective / Scope of supply:

- 1. Re-rate existing pumps with new hydraulic end, keeping existing shaft.
- 2. Replace existing DC speed controlled motors with VFD driven asynchronous motors
- 3. Replace existing conventional packing with mechanical seal

Hydraulic Options:

- New impeller and new <u>diffuser</u> (→ First design iteration)
 - VS.
- New impeller and <u>volute insert</u> (→ Second design iteration)

Introduction - Objective

Proposal curve for the hydraulic upgrade (max. duty; $N_{s,design} = 2350$)

Existing pump

Impeller/diffuser_

in

single volute casing

Existing diffuser (4 vanes)

New high capacity impeller

□ 8 vanes

□ D_{2,max} 21½"

(546.1 mm)

New diffuser (6 vanes)

First Test Result:

- Failed to make the head
- Efficiency too low
- Power too high
- ❖ BEP at too low capacity

Suspected Cause:

Choking casing discharge (narrow throat passage)

Second Test Result:

(After opening up casing discharge throat area)

- Head picked-up
- Efficiency improved
- BEP shifted to higher capacity

BUT, pump still not making expected performance

Suspicion:

Incorrect diffuser design?

Remedy:

> Volute insert

- While developing volute insert and manufacturing parts pump was shipped to site.
- At site an 8X vane pass vibration issue @ PIH emerged when running around 1200 r/min.

Vibration measurement locations

Order Tracking

1000 – 1420 r/min

> PIH: 7.3 mm/s

@1236 r/min (8X, or 165 Hz)

Bump Test:

169 Hz natural (resonance) frequency (Hor.)

Elevated vibration levels due to:

- 8X vane passing excitation forces @165 Hz
- Natural (resonance) frequency in horizontal plane
 @169 Hz.
- Very small impeller tip ("Gap B") clearance, causing strong vane passing excitation forces

$$(D_3 - D_2) / D_2 = 553 - 546 / 546 = 0.013 \text{ or } 1.3\%$$
 (!)

Second Design

- > Keep new high capacity impeller
- > Replace diffuser with (dual) volute insert
- ➤ Increase impeller tip clearance

Hydraulic Upgrade of Hot Water Circulation Pumps in a District Heating System

Second Design

Test result:

- ✓ Head okay
- √ Efficiency okay
- ✓ Power okay
- √ Tip clearance (Gap B) okay

$$(D_3 - D_2) / D_2 =$$
 $578.2 - 515 / 515 =$
 $0.123 \text{ or } 12.3\%$

✓ No 8X vane pass vibration issue anymore

Concluding Remarks

- Pumps have been upgraded with new hydraulic end.
- First design iteration with new impeller and new diffuser was not successful:
 - Hydraulic performance failure
 - Vibration issue
- Second design iteration with same new impeller and volute insert proved to be successful.
- Pumps with new impeller and volute insert are running trouble-free at site for more than 2 years now, performing fully to customer satisfaction.

Thank you for your attention

Questions?

