Centrifugal Compressor Root Cause Analysis and Case Study (Pulsation and Vibration Issues)

Gufran Noor, P.Eng., General Manager, Field Services and Bill Eckert, P.Eng., Ph.D., Principal Engineer

AGENDA

- A) Excitation forces on centrifugal compressors
- B) Root cause analysis approach
- C) Case study:
 - Pulsations, Blade Passing Frequency, Vibration
 - Pipe shell mode & acoustic resonance
 - Lessons learned

A) Forces Acting around Centrifugal Compressors

- 1. Mechanical Forces (imbalance of rotor, whip/whirl)
 - Low frequency (≤ run speed)
- 2. Flow Induced Turbulence
 - Created by flow past openings or obstructions
 - Can result in broad band energy and discrete frequency excitation
- 3. Pulsations from Compressor Impeller
 - Excitation frequency based on number of blades (impeller,

diffuser, shaft speed)

 Pulsation strength related to geometry and operating point

A) Forces Acting around Centrifugal Compressors

4. Rotating Stall Forces

- Flow instabilities (at low flow)
- Excitation at sub-synchronous compressor speeds (< run speed)

5. Momentum Changes

- Due to rapid opening/closing of valves = transient pressure waves
- Discontinuous, not steady-state
- Can generate significant forces on the piping system

B) Root Cause Analysis Approach

C) Case Study. Collection – Event, Team, Problem

- Event Revamp of 3 Compressors at Pipeline Station in 2008
 - Operating Speed 3600 to 5000 rpm
 - Ps = 42.4 barg (615 psig); Pd = 57.2 barg (830 psig)
- Team Field Troubleshooter and Client Representatives
- Problem Numerous failures of instrumentation
 - Primarily RTD/thermocouples on Discharge side, but some Suction too

Modifications made....but unsuccessful

Discharge RTDs

Suction RTDs

C) Case Study - Root Cause Analysis Approach

C) Case Study. Collect Data - Initial Investigation

Background

- Client had changed thermowells (6" to 3") with no improvement
 - Used this data to calculate thermowell frequencies:

	Original 6" Thermowell	Replacement 3" Thermowell
Mechanical Natural Freq. (1st Bending Mode of a Cantilevered Beam)	715 Hz	2840 Hz
Vortex Shedding Freq. at Suction Conditions (54° F, 615 psig, and 2500 mmSCFD)	370 Hz	
Vortex Shedding Freq. at Discharge Conditions (100° F, 826 psig, and 2500 mmSCFD)	310 Hz	

C) Case Study. Collect Data - Initial Investigation

- Field measurements of:
 - Pulsations in suction, suction eye and discharge
 - Vibration on suction and discharge piping

C) Case Study. Collect Data – Pulsation

Discharge Piping (3600 – 4500 rpm)

- Peak pulsation = 1.65 bar pk-pk (24 psi pk-pk) @ 1274 Hz
- About 3% of mean pressure
- 1274 Hz = blade pass frequency at 4500 RPM (17 X Run Speed)

C) Case Study. Collect Data – Pulsation

Compressor Suction Eye (3600 – 4500 rpm)

- Peak pulsation = 0.17 bar pk-pk (2.4 psi pk-pk) @ 830 Hz
- About 0.4% of mean pressure
- No Blade Pass Frequency found

C) Case Study. Collect Data – Source Strength

Pulsation strength varies with operating conditions.

Problems occur when compressor operates off its best efficient

C) Case Study. Collect Data – Discharge Vibration

- Peak hold vibration @ speed range (4100 4510 rpm)
- 46.5 mm/s pk (32.9 mm/s rms, 1.83 in/s pk) @1284 Hz
- Discharge pipe (36" OD; 0.75" wall thickness)
- 1278 Hz = blade pass frequency at 4510 rpm
- Vibration equivalent to 38 g's pk (instruments rated for 10 g's)....no wonder RTDs failed

C) Case Study. Data – Suction Vibration

- Peak hold vibration @ speed range (4100 4510 rpm)
- 16.8 mm/s pk (11.9 mm/s rms, 0.66 in/s pk) @1282 Hz
- Suction pipe 914.4 mm OD (36" OD); 19 mm wall (0.75")
- 1278 Hz = blade pass frequency at 4510 rpm
- Vibration equivalent to 14 g's pk

C) Case Study. Analysis – Determine Causes Evaluate Possible Root Causes of Vibration

- Peak Pulsation Frequency = Peak Piping Vibration Frequency (17X run speed)
 - Impeller Blade Pass = 17X run speed
- Thermowell Vortex Shedding and Natural Frequencies ≠ Problem Frequency
- Occurs at Steady State. Worst when not operating at Best Efficiency Point
- No likely Side Branch Sources
- Most likely source was Pulsation at Impeller Blade Pass

C) Case Study. Analysis – Determine Causes Evaluate Possible Root Causes of Vibration

- Conduct an "Operating Deflected Shape (ODS)" analysis
 - Identify relative vibration (compared to reference point)
 - Requires field test

• Goal:

- Define piping mode shape
- Compare to calculated mechanical and acoustical mode shape

C) Case Study. Analysis – Piping Vibration ODS Results

- 5 lobe, circumferential mode shape of 36" discharge pipe
- Measured the amplitude and phase of vibration

C) Case Study. Analysis – Acoustic Natural Frequencies (ANF)

- Calculated ANF
- High frequency not a simple plane wave
- Many possible ANFs with transverse and axial components
- ANF closely matched measured vibration/ODS
 - 1261 Hz vs. measured 1274 Hz
 - 5 pressure lobes in transverse mode
 - 3 nodes along axial length

5 lobe plane acoustic mode

Axial acoustic mode

C) Case Study. Analysis – Piping Mechanical Natural Frequency (MNF)

- Finite Element Model discharge pipe
- Matching mode shape @ 1266 Hz
- Implications:
 - Coincident ANF and MNF with matching mode shapes
 - These would be highly coupled

1266 Hz shell mode of the pipe with 5 lobes circumferentially and 3 nodes axially

C) Case Study. Analysis – Interference Plot...the "perfect storm"

C) Case Study - Root Cause Analysis Approach

C) Case Study. Solution – Corrective/Preventive Action

What is immediate fatigue failure potential?

- Stress calculated using measured displacement , 4.9 MPa pk-pk
 (710 psi pk-pk)
- Pipe stress is well below endurance limit
- Small bore connections still at risk

Stress plot for the 1266 Hz pipe shell mode

C) Case Study. Solution – Corrective/Preventive Action

- Recommendations to fix the problem (ongoing resolution)
 - Reduce or Eliminate Blade Pass Frequency Source:
 - Change Impeller not likely
 - Remove vane diffusers tested, but no significant improvement
 - Change Piping Design:
 - Add Internal Splitters or External Stiffeners
 - Thicker Wall Finite Element Model Predicts most Effective

- Eliminate Small Bore Connections Near Compressor
- Improve Pipe Clamps

C) Case Study. Solution – Test and Implement

Implementation

- Relocation/removal of small-bore connections near compressor
- Possible future discharge piping wall thickness change, but cost is a major factor

Lessons Learned

- Energy Institute (EI) Standard: good for screening problems such as small bore, flow induced vibration (FIV), acoustical induced vibration (AIV), and transients
- Screen or analyze at Design Stage
- Include pulsations at Blade Pass in the scope of work