

PC271 Lessons Learned: Scotford Manufacturing Twin-Screw Compressors in Styrene Vent Gas Service

Matt Pickard, P. Eng: Shell

Presentation Overview

- System Arrangement
- Problem
- What We Found?
- Solutions
- Lessons Learned

System Arrangement

System Arrangement

Problem

LOPC

- Vibration was sufficient to cause seal gas nipple to shear off and building to fill with CH4
- Loss of Machine
 - Rotors were written off
 - Long Lead Time
 - Site was vulnerable as it takes upwards of 18 months to fix the spare
- Maintenance Costs
 - Over \$1,000,000 to fix
 - Taking resources from other badly needed repairs
- Production
 - Potential to limit production if demand was high enough

Problem

Problem

What we found?

- Vibration Protection System Disabled
 - BN-3300 Racks
 - Improperly configured
 - Single voting in most cases
 - No time delay
 - Latching trip relays
 - This configuration lead to many nuisance trips
- Many Manual Operations During Start-up
 - Spill back valve was manual
 - EB Injection valve was manual
 - Discharge temperature control (condensate injection) was manual during start-up as it was too slow

What we found?

- Poor Process Understanding
 - Condensate / Ethyl Benzene Injection
 - Together they form an azeotrope that will vapourize under the operating conditions
 - Condensate for discharge temperature control
 - EB to prevent polymerization
 - EB will remain a liquid under all compressor operating conditions
 - Cannot inject EB without condensate

What we found?

- Failed Over-Speed Trip Card
 - Uncovered by IPF testing during repair work
 - Machine sped through the over-speed trip set-point and tripped on mechanical over-speed trip
- Neglected Lube Oil Skid
 - Sensing line plugged with gasket material
 - "Failed Pump" was actually plugged suction strainer

Solutions

- Vibration Protection System Enabled
 - Configured more robustly
 - Dual voting
 - Time delay as appropriate
 - Non-latching trip relays
 - No nuisance trips since being enabled
- Manual Operations were Automated
 - Spill back valve was automated
 - EB Injection valve was automated to close if condensate injection valve was below 10% output
 - Feed-forward temperature control scheme was implemented
 - Responds to change in compressor speed subject to meeting an adequate discharge temperature

What we changed?

- Over-Speed Trip Card Replaced
- Neglected Lube Oil Skid
 - PM's established based on findings
 - Checked sister skid at first opportunity
- Compressor Repair
 - Casing was salvageable using an impingement plate
 - Rotor's were scrapped and new rotors ordered
 - Repairs too extensive with no guarantee of success

How does it work today?

- Start-ups are more consistent
 - Less need for operator intervention
 - Automated spill back controller and a capable temperature controller
- No spurious vibration trips
- Enhanced monitoring allows for proactive operator action
 - Managed to operate a damaged machine for several months until a TA window

Lessons Learned

- Vibration Systems
 - Vibration systems must be properly engineered and implemented to obtain maximum value
 - Need to consider balance of overall system reliability as well as machine protection
 - Enhanced monitoring allows for proactive operator action
- Modern Control Systems
 - Modern control systems can overcome many problems that were thought to be too difficult to control conventionally only a couple of decades ago
 - Can automate many tasks and provide the operator with more repeatable results
- Preventative Maintenance
 - Reinforces the need to periodically test and maintain the equipment

Q&A

Backup Slides

Start-up Data from April 29th, 2011 Before Changes

Process Data from Failure on May 17th, 2012

Process Data from November 15, 2011 – After Changes

