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ABSTRACT 

For mechanical drive steam turbines, the investigation 
results of corrosion fatigue phenomena in the transient zone 
are introduced, including basic phenomena on expansion 
line and actual design and damage experience. These results 
were analyzed from the standpoint of stress intensity during 
the start of cracking. In order to resolve such problems, 
preventive coating and blade design methods against fouling 
and corrosive environments are developed. Detailed 
evaluation test results are given for coating performance 
using a unique test procedure simulating fouling phenomena 
and washing conditions. Finally, the results of the 
successful modification of internals and on-line washing 
results on site are introduced. 
 
INTRODUCTION 
In petrochemical plants, the flow path of process gas 
compressor drive steam turbines have several kinds of 
potential damage（1）such as erosion and corrosion, resulting 
in deterioration of performance and a decrease in strength 
margin. Especially, in the process of steam expansion, 
depending on steam pressure and temperature, corrosive 
chemicals in very low levels of concentration tend to be 
enriched to a high level. These enriched chemicals deposit 
on the internal parts of the steam turbine and cause a 
decrease in strength or blade failure（2）.  
In this paper, the authors investigate the relationship 
between this enrichment zone, strength safety margin, and 
blade failure, and the root causes according to analysis of 
actual blade failures. Based on these investigation results, 
the authors introduce blade structure improvements in 
order to increase the safety margin for corrosion fatigue. 
As one of the factors related to performance deterioration 
and operation restriction, fouling on nozzle and blade 
profiles has to be highlighted, and it is necessary to think 
of some improvements for the prevention of fouling. The 
authors study surface treatment methods applicable to 
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actual blades to improve anti-corrosion and anti-fouling. 
They also introduce a new surface treatment method and 
the results of an evaluation test for coating functions, 
including washing efficiency using a unique simulation test 
set-up. Finally, the possibility of long-term effective 
operation based on a combination of a new surface 
treatment method, new online washing system and special 
flow path design is explained. 
 
Turbine Expansion Line and Typical Damage 
In the physical process of the low pressure stages of a 
steam turbine expanding from the superheated zone to the 
saturated zone, possible causes of mechanical damage are 
shown in Figure 1. On dry and wet areas around the 
saturation line, we tend to observe SCC caused by high 
concentrated NaOH, pitting, corrosion fatigue related to 
NaCl enrichment in the special zone (Wilson zone) in 
which dry and wet conditions continuously occur in the 
moisture range of 2% to 6% and heavy drain erosion in 
high moisture zones of over 12%. As shown in Figure 2, 
a fatigue endurance limit for 13Cr stainless steel under 
NaCl distilled water decreases drastically, and in this 
Wilson zone we have to pay particular attention to blade 
design, whilst considering the critical importance of 
controlling impurities in steam for actual continuous 
operation. It is necessary to understand the corrosive 
environment in actual operation to evaluate fatigue life. 
However, it is very difficult to expect concentration level 
changes of corrosive chemicals under conditions of rapid 
expansion in complicated high velocity flow fields. In this 
sense, it is important to evaluate mechanical integrity with 
a combination of detailed static and dynamic stress 
analysis and operation experience. 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Turbine Expansion Line and Typical Damage（3） 
 
 
 
 
 
 
 
 
 
 
 
 

Case Study of Typical Low Pressure Blade Damage and 
Root Cause Analysis 
Figure 3 shows a typical failure of blades in the low 
pressure section (tenon and finitely grouped type of L-1 
stage) （5）. The tenon and shroud plate have failed. Detailed 
conditions of the fracture surface and crack propagation 
direction (arrows) are shown in Figure 4. This is 
conformed cracking initiated on the internal side of the 
tenon and this failure is HCF according to the observed 
fine spacing striation（6）.  
 
 
 
 
 
 
 
 
 
 

Figure 3 Typical Blade Damage of LP Section 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 Crack Propagation on Fracture Surface 

Detailed fracture and stress analyses of the actual blade are 
carried out by root cause analysis, which is shown in 
Figure 5. Key factors involved in this failure could include 
excessive static and dynamic external forces, and a 
decrease in the fatigue endurance limit in a corrosive 
environment. It is also important to evaluate resonance 
stress in the variable speed range in such a corrosive 
environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Root Cause Analysis for Blade Damage 
 

Figure 2.  Decrease of Fatigue Endurance Limit for 13Cr 
Stainless Steel under NaCl Distilled Water（4） 
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Enrichment of Corrosive Chemicals in Steam and 
Corrosion Fatigue 
In order to investigate the relationship between corrosion 
fatigue and the wet/dry transient zone, a detailed analysis 
of the fracture surface and corrosion chemicals deposited 
on an actual damaged rotor is carried out.  
As a result of the fracture surface analysis shown in Figure 
6, the typical corrosion pits of diameter about 20 
micrometers in diameter are observed around the fatigue 
crack starting point. Though corrosion fatigue includes 
environmental factors, it is difficult to quantitatively 
estimate the actual operating condition affecting the fatigue 
limit, and there are a lot of other unclear factors. A basic 
mechanism of corrosion fatigue is explained in Figure 7（9）

（16）.  This corrosion fatigue phenomenon is affected by 
certain types of chemical materials and their concentration 
levels, and it is thought that concentration cell effect and 
selective passive film formation cause material 
embitterment.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 Corrosion Pits on Fracture Surface 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 Mechanism of Corrosion Pit Generation 
 
Considering the fact that several typical corrosion pits are 
observed, it is easy to expect a very severe corrosive 
environment under high concentration of corrosive 
chemicals.  In order to define this severe corrosive 
environment, a concentration analysis of deposits on the 
fracture surface is carried out.  As indicated in Figure 8, 
the concentration of Na and Cl are at a maximum of 4000 
ppm and that of K is 1700ppm; these levels are relatively 
high.  
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
In addition, the same corrosion pits are observed on the 
tenon, blade profile, and root of sound blades of the same 
stage and turbine as shown in Figure 9. Inside these pits, 
2000 ppm Cl is detected. For further investigation, the 
numbers of corrosion pits are counted on the blades for 
each stage from the high-pressure section to the 
low-pressure section in the flow path to compare the 
corrosion environment level reiteratively. The profile of 
the measured pit count number in the flow path is shown in 
Figure 10.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
According to this profile, the frequency of corrosion pits 
occurrence in the 3 stages (L-2, L-1, L-0: last stage) of the 
low-pressure section located in the wet zone is high. This is 
especially the case for the L-1 stage located in the wet/dry 
transient enrichment zone, which has the highest frequency 
of corrosion pit occurrence. The profile of the measured 
concentration of corrosive chemicals that is sampled from 
the blade surface for each stage is shown in Figure 11.  
According to this profile and the Cl concentration of the 
L-1 stage, which is extremely high at around 40000ppm（10）, 
it is considered that the corrosive chemical enrichment in 
the wet/dry transient zone and the corrosive environment 
have a strong relationship with blade corrosion fatigue 
damage. The threshold of the Cl deposit concentration 
level for determination which is a cause of general fatigue 
or corrosion fatigue is around 1000 ppm.   
 
 
 
  

Figure 8 Corrosive Chemicals Concentration of Deposits 
on Fracture Surface 

Figure 9 Corrosion Pits on Sound Blade and Corrosive   
Chemicals Concentration inside of Pits 
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Study of Enrichment Zone and Strength Safety Margin  
The separation and deposit, liquid, or solid phases and 
concentration level of corrosive chemicals on the nozzle 
and blade profile in each stage are determined by steam 
temperature and pressure on the turbine designed 
expansion line and concentration of impurities in steam, 
which is related to water/steam quality control. The 
analysis results of Cl concentration in steam expansion and 
deposit /dissolved condition are shown in Figure 12. This 
analysis is based on steady chemical equivalent conditions
（11）by varying pressure, temperature, and Cl saturated 
concentration, and focusing on the NaCl supersaturation 
line in the high concentration zone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 12, two different expansion lines are described as 
arrows “pattern-1” and “pattern-2”. 
Where Cl concentration reaches 10 ppb for pattern-1, 
steam expands in the region of high pressure and 
temperature over the Cl saturation line. Even if the steam 
condition expands to point-A, the NaCl phase is still gas in 

the dry zone and the blade surface is not exposed to high 
concentrations of corrosive elements in wet conditions.  
On the contrary, in the case of 5 ppb, if steam expands in 
the temperature and pressure of the Cl saturation zone and 
goes to supersaturation point-Y, water with 30% NaCl, an 
extremely high concentration, occurs and the blade surface 
is exposed to a severely corrosive condition. According to 
these analysis results, even if the Cl concentration is 
extremely low, such as 1 ppb to 5ppb in steam, a severely 
corrosive environment can still appear around the blades
（12）.        
However, under actual operating conditions, the blade 
surface can be washed by steam mist corresponding to 
moisture in each stage. At the clearance of the tenon and 
root of the flow stagnation zone, it is difficult to wash and 
the effect of corrosive chemicals enrichment exceeds the 
effect of washing.  In such conditions, it is considered that 
the decrease in fatigue endurance limit is accelerated.      
On the contrary, steam quality control for maintaining 
extremely low levels (in the order of several ppb) is 
practically limited. In order to improve the strength safety 
margin under actual operations, it is necessary to design 
the blade structure with a profile and grouping method to 
decrease both the static and vibration stresses and eliminate 
the flow stagnation region.        
The L-1 stage blade damage is related to the enrichment 
and concentration level in the wet/dry transient zone, and 
the vibration stress level. To verify this relationship for 
damaged and undamaged blades, the relative safety factor 
of vibration stress based on the allowable limit in the 
transient zone and measured number of corrosion pit are 
plotted per each designed stage moisture level as shown in 
Figure 13.  From this result, it is clear that, even if the 
relative safety factor is sufficient, corrosion fatigue damage 
occured in the enrichment zone. Furthermore, it is 
confirmed that the number of corrosion pits is maximum in 
the enrichment zone, in the same fashion as the profile of 
the relative safety factor of vibration stress. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Study of Corrosion Pits and Crack Propagation 
The authors studied the question of whether only a 
corrosive environment contributes to initial crack 
generation and crack propagation or the corrosion pit itself 
contributes by stress concentration as a general fatigue 
phenomenon. Fatigue tests were conducted in a corrosion 

Figure 12 Cl Concentration in Steam Expansion and
Deposit/Dissolved Condition 

Figure 13 Relation of Wilson Enrichment Zone, Actual 
Moisture and Fatigue Strength Safety Factor  

 Figure 10 Corrosion Pit No. of Each Stage and Profile

 Figure 11 Corrosive Chemicals Concentration Profile 
of Deposits 
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environment by changing the concentration of NaCl to 
0.03%, 3% and 22% respectively（13）. The relationship 
between vibration stress of fatigue test conditions and the 
observed corrosion pit diameter is plotted on Figure 14.  
In this figure, the vibration stress range is based on a 
calculation of the threshold of stress intensity factor（14） , 
and thus the limit of crack start propagation, as well as the 
vibration stress measured from detail fracture surface 
analysis for actual damaged blades, is plotted.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  
According to these results, if a corrosion pit of over 100 
micrometers diameter has a vibration stress of less than 
100MPa, there is a possibility of crack propagation. Under 
a severe corrosive condition of 22%NaCl concentration, 
together with a small amount of oxygen, even if a low 
vibration stress acts on the blade, small corrosion pits of 20 
micrometers are observed and finally fatigue failure 
occurred. Based on the fact that the blade actually failed 
under low vibration stress and several corrosion pits were 
observed, it can be concluded that a corrosive environment 
eavily contributes to initial crack generation, but crack 
propagation and corrosion pitting themselves don’t seem to 
contribute to stress concentration. 
Conventional blades have a tenon, and after tenon caulking 
from plastic forming, micro wrinkle occurs. It is suspected 
that this micro wrinkle contributes to crack propagation as 
a stress concentration or stress raiser in certain conditions. 
In Figure 15, the stress intensity factor calculated from the 
actual observed wrinkle depth and acting vibration stress is 
compared to the threshold of stress intensity factor. This 
figure tells us that if a large excitation force over 10 times 
that calculated acts on a blade, there is a possibility of 
crack propagation from micro wrinkles in tenon caulking. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
Improved Blade for Corrosion Fatigue Prevention 
From the above, it was concluded that the strength safety 
margin of conventional tenon caulking finite grouped 
blades has to be improved for an application of L-1 stage 
under the wet/dry transient zone for high speed and high 
loading turbine (such as synthesis gas compressor drivers), 
when considering the difficulty or limitation for 
water/steam quality control.  
 
 
 
 
 
 
 
 
 

 

Figure 16 Improved ISB for Corrosion Fatigue Strength 

 
Having reached this conclusion, as shown in Figure 16, 
ISB （15）was developed by applying the blade profile and 
shroud in one piece without a tenon . These blades are thus 
infinitely grouped with a twist back torque mechanism as 
shown in Figure 17 in order to eliminate lowest frequency 
tangential load in phase mode and increase natural 
frequency. For this improved ISB, a stress analysis has 
been completed and sufficient improvement of safety 
factor confirmed（16） . Furthermore, this ISB has been 
applied on actual turbines and successfully operated. 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 17 Mechanism of ISB Twist Back Infinite Coupled（16） 

Figure 14 Relation of Corrosion Pit Size and Vibration Stress 
in Comparison with Crack Propagation Limit Line 

Figure 15 Tenon Caulking Stress Raiser and Crack 
Propagation Limit  
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Surface Treatment Methods and Features for 
Prevention of Flow Path Damage 
The authors have introduced blade structure improvements 
in order to increase the safety margin for corrosion fatigue. 
A key factor related to performance deterioration and 
operation restriction needing emphasis is fouling on nozzle 
and blade profiles. It is necessary to think of some 
improvement for the prevention of such fouling. 
Accordingly. the authors have studied surface treatment 
methods applied to actual blades to improve anti-corrosion 
and anti-fouling. 
Applicable surface treatments for rotating machines to 
prevent classified damage phases are shown in Table 1. 
Several surface treatment methods corresponding to 
operation environment have been applied for prevention of 
erosion damage by solid particles and water droplets, 
fouling on the flow path, and corrosion fatigue. Recently 
developed and improved methods are boronizing, ion 
plating, plasma transfer arc welding, and radical 
notarization plus Nickel Phosphate multilayer hybrid 
coating.  These methods are introduced in this paper.  

 

 
 

 
 
 
 
 
 
 
 
 

 
  
Furthermore, multilayer hybrid spray coating is applied for 
compressor impeller assemblies to prevent or relax fouling 
of internals as shown in Table 2.  However, the bonding 
strength for this type of coating is generally low and it is 
difficult to maintain the initial coating function during 
long-term operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Requirement of Features for Blade Surface Treatment 
and Concept of Developed Coating 
In order to prevent both steam turbine performance 
deterioration and blade strength margin decrease during 
long-term operation, a new surface treatment is necessary 
to meet requirements of solid particle erosion prevention, 
anti-fouling, anti-corrosion, and drain erosion protection 
corresponding to steam temperature and pressure for each 
stage as shown in Figure 18. In this study, the requirements 
are defined as shown below for the low pressure section of 
steam temperature which is lower than 350 deg.C,as 
follows: 1) Prevention or relaxation of fouling on nozzle 
and blade profiles, 2) Improvement of washing efficiency 
during online washing, 3) Prevention of decrease in 
corrosion fatigue strength, 4) Anti-drain erosion 
performance in the same way as base materials  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
One of the main factors affecting fouling on the blade 
profile surface is the material surface energy. As shown in 
Figure 19, PTFE has a lower surface energy than other 
types of ceramics and this is therefore suitable for 
prevention of fouling. However, PTFE’s own strength is 
low and it is necessary to improve coating performance 
with a hybrid for actual application.      
 
 
 
 
 
 
 
 

 
 
 
 
In order to realize a new suitable and multi-function 
coating considering the bonding strength between the 
anti-fouling coating layer and base metal, anti-erosion 
(prevention of layer separation) and anti-corrosion, a new 
coating has been developed. This coating concept is shown 
in Figure 20.  
Compression stress is produced in the surface of the base 

Table 1   Damage Phase and Surface Treatment 

Figure 18 Turbine Internal Condition and Coating 
Required Function  

Figure 19 Several Types of Ceramics and Surface 
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metal with a radial nitriding surface treatment. Furthermore, 
a Galvanic Ni Coating layer is formed to improve bonding 
condition and coherency.  A Ni-P PTFE Hybrid coating is 
formed to realize the combination of reduced surface 
energy for improved anti-fouling and bonding force. 
Finally, a top PTFE dispersion coating is formed to further 
reduce surface energy more.   
 
 
 
 
 
 
 
 
 
 

 
Figure 20 Basic Concept of Developed Coating 

 
Systematic Evaluation Test and Results for Developed 
Coating 
A systematic evaluation test was carried out to understand 
the characteristics of the newly designed hybrid coating 
layer (based on new concepts including top coating) and 
compared with conventional coating. As shown in Table 3, 
coating test pieces were prepared for each evaluation 
parameter such as surface roughness, PTFE dispersion 
ratio, and layer thickness. Figure 21 shows an overview of 
the coating test pieces corresponding to Table 3. Coating 
evaluation test items and target requirements are 
summarized in Table 4.   
The procedures to simulate actual operation in terms of 
fouling, washing and drain erosion were developed and 
applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Anti-Fouling Characteristics Evaluation Test  
An anti-fouling test set up for simulating fouling 
conditions so that deposits will form on the material 
surface has been designed and manufactured according to 
the theory of cohesion and adhesion engineering of micro 
fine particles.  For the basic fouling test procedure, fine 
particle material, diameter and particle collision velocity 
were adjusted the same as actual conditions and the amount 
of particle concentration was increased for acceleration of 
fouling conditions.  Figure 22 shows the anti-fouling test 
set up and Table 5 shows the test conditions.  The rotating 
drum is heated up to 500 deg.C and Silica fine particles are 
sprayed over the test pieces at a velocity of 300 m/sec.  
The ease of fouling is evaluated relatively by measuring 
the weight increase of deposit on the test piece surface 
during over a 200-hour test period.  Figure 23 shows the 
surface deposit condition during this 200 hours of spraying 
each test piece.  An anti-fouling index (difficulty to 
deposit) is defined as the ratio of deposit weight based on 
SUS 410J1 base metal. The relationship between this 
anti-fouling index and surface roughness for each test piece 
is shown in Figure 24.  
 
 
 
 
 
 
 
 
 
 

Table 3 Coating Test Pieces and Evaluation Parameter 

Table4 Coating Evaluation Test Items  
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Figure 21 Overview of Coating Test Pieces 
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According to this result, PTFE Ni-P hybrid coating has 
almost the same anti-fouling characteristics as PTFE 
coating. The change in the anti-fouling index for PTFE 
Ni-P hybrid coating, when changing the occupation ratio 

for PTFE dispersion in the top coating is shown in Figure 
25. With a 20% occupation ratio of PTFE dispersion and 
practical surface roughness, the anti-fouling index can be 
decreased to 1/5 of the base material. Furthermore, this 
coating performance is twice as effective as the 
conventional spray paint coating usually applied for a 
compressor. 
According to this result, PTFE Ni-P hybrid coating has 
almost the same anti-fouling characteristics as PTFE 
coating. The change in the anti-fouling index for PTFE 
Ni-P hybrid coating, when changing the occupation ratio 
for PTFE dispersion in the top coating is shown in Figure 
25. With a 20% occupation ratio of PTFE dispersion and 
practical surface roughness, the anti-fouling index can be 
decreased to 1/5 of the base material. Furthermore, this 
coating performance is twice as effective as the 
conventional spray paint coating usually applied for a 
compressor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Washing Efficiency Evaluation Test   
If an anti-fouling coating is formed on the nozzle and blade 
profile surface, chemical contaminants tend to deposit on 
the profile surface during long-term operation. In order to 
resolve this problem, a new technique of on-line washing 
can be applied for a steam turbine with water injection into 
the valve chest and steam change from the dry to wet zone 
as the previously described（17）. In this study, washing 
efficiency is evaluated with a selected anti-fouling coating. 
 
 
 
 
 
 
 
 
 
 
 

 
An evaluation procedure for the simulation of actual 
washing has been developed by applying steam injection to 
test pieces with deposits after a 200-hour fouling 
simulation test period. The washing efficiency is evaluated 
quantitatively by the weight of removed silica deposit and 
qualitatively by an overview of the washed surface. Figure 
26 shows an overview of surface deposit conditions during 

Figure 22 Anti-Fouling Test Set-Up 

Figure 23 Surface Deposit Condition after 200Hrs Spray 

Table5 Micro Powder Deposit Test Condition  
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⑤ Spraying rate : 300m/sec
⑥ Temperature (Cooling water) : 100℃
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washing and Figure 27 shows SiO2 deposit removal mass 
during washing.  The SiO2 deposit removal time is listed 
in Table 6.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
From these results it can be concluded that the selected 
PTFE Ni-P hybrid coating has the same washing efficiency 
as a PTFE single coating. By comparison of the deposit 
weight ratio and complete removed washing time ratio 
among the various test piece coating types, it is thought 
that the relative washing speed of the PTFE Ni-P hybrid 
coating is larger than other types of coating and base 
metals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Anti-Erosion Evaluation Test 
An anti-erosion evaluation test was conducted in 
accordance with ASTM G32-77 （18） using the cavitations 
erosion accelerated test set-up shown in Figure 28. The 
results of this test are shown in Figure 29.  The wear mass 
reduction of the Ni-P PTFE hybrid coating is much smaller 
than that of the PTFE single coating and larger than that of 
the base metal at the beginning of the test. However this 
wear mass reduction is expected to saturate to a level 
smaller than that of the base metal at the end of the test. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corrosion Fatigue Test 
  A rotary bending fatigue test was conducted for the 
PTFE single coating and the radical nitriding Ni-P hybrid 
coating under normal atmospheric conditions and very 
severe corrosive conditions, with 3% NaCl distilled water. 
The test results are shown in Figure 30 and Figure 31 
respectively. Under normal atmospheric conditions, the 
fatigue endurance limit for both of the PTFE single coating 
and the radical nitriding Ni-P hybrid coating is 400MPa at 
1X107 cycles, almost the same as base metal SUS410J1 
applied for blades and nozzles.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
However, with 3% NaCl distilled water, the fatigue failure 
rotating bending stress decreased to 200 MPa at 1X108 
cycles for the PTFE single coating, 100 MPa at 4X107 
cycles for the base metal, and 150 MPa at 1X108 cycles for 
the radical nitriding Ni-P hybrid coating. This is twice the 
corrosion fatigue resistance than the base metal. It is 
thought that the reason why the corrosion fatigue resistance 
is improved with both coatings is because the coating layer 
is very fine with fewer defects (such as pin holes), and that 
they contribute to the effect of environment interception. In 
addition, in the LCF region of high stress, the corrosion 
fatigue resistance of these coating has improved, which 
means that the layer itself has a high level of toughness and 
high bonding strength with the base metal. 
 
 
 
 

Figure 27 SiO2 Deposit Removal Mass during Washing 

Table 6 SiO2 Deposit Removal Time 

Figure 29 Accelerated Erosion Test Results 

Figure 30 Fatigue Test Result at Atmosphere 
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Coating Application of Actual Blades and Additional 
Improvement for Prevention of Steam Turbine 
Efficiency Deterioration 
Following the results of this study and the evaluation tests 
as explained above, the PTFE Ni-P hybrid coating was 
applied to the actual blade as shown in Figure 32. 
Additional improvement measures for prevention of steam 
turbine efficiency deterioration were applied to an actual 
steam turbine as shown in Figure 33 and listed below. ISB
（19） was applied for all stages (impulse and reaction types) 
to increase overall efficiency and prevention of corrosion 
fatigue in the dry/wet transient zone. For inlet 1st stage 
nozzles, boronizing coating was applied to prevent solid 
particle erosion and last-1 and last stage blade surfaces 
were treated with TiN ion plating and PTA (plasma 
transfer arc welding) respectively to prevent drain erosion. 
In addition, wide pitch nozzles were applied for all stages 
to increase stage efficiency and to minimize after stage 
pressure due to fouling. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In Figure 34, the difference in after stage pressure increase 
due to deposits on the nozzle profile is explained by 
comparing a fine pitch nozzle and wide pitch nozzle. If 
deposit thickness increase rate (mm/year) is the same, the 
nozzle area reduction rate of wide pitch nozzles can be 
decreased by half because of the smaller number of nozzles 
or smaller profile surface area than the fine pitch nozzle.  
After-stage pressure increase is proportional to steam flow 
and this turbine can have more margin for operating time 
reaching the pressure limitation under fouling conditions, 
whilst maintaining the required power and extending 
operation time.                 
Furthermore, if online washing is executed periodically, 
the operating time can be extended more by performance 
recovery.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 35 explains the advantage of each improvement 
and their combination.  In this case study, the power 
recovery ratio after online washing is assumed to be 80% 
and the power decrease rate due to after-stage pressure 
increase caused by fouling is half of a fine pitch nozzle 
when using a wide pitch nozzle application.  
This new online wash technology has been applied for over 
20 turbines and typical successful results on site are shown 
in Figure 35（20）(21). In this case, an anti-fouling coating 
such as an Ni-P PTFE hybrid multi layer coating is not 
applied. However, it has been confirmed that the turbine 
performance recovers after online washing to the original 
clean condition. If this newly developed coating and other 
improvements, including online washing and wide pitch 
nozzles as explained above are applied systematically, the 
turbine integrity and performance can be maintained to the 
same as the original during long-term operation over 8 
years（22）（23）(24)（25）(26) .    
 
 
 

Figure 31 Corrosion Fatigue Test Result  

Figure 32 Coated Actual Blade 

Figure 33 Improvement of Blade Integrity, Coating Application of 
Actual Blades and Additional Improvement for 
Anti-efficiency deterioration 

Figure-34 Wide Pitch Nozzle to Minimize Pressure 
Increase due to Fouling 
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Detail Investigation of Steam Turbine Internal 
Phenomena during On-line Wash 
The steam turbine online wash procedure had already been 
established and applied in more than 30 actual turbine 
applications. The water is directly injected inside of the 
turbine valve chest and typically it is not necessary to 
reduce the power and speed. During several-hour-short 
-duration online washing, the LP section condition 
becomes wet and washable chemicals are washed out as 
indicated by a high spike of conductivity. After several 
hours of washing, the extraction pressure decreases to a 
level much lower than the allowable pressure limit and the 
turbine performance increases as shown in Figure 36. 
Before and after washing, the operating conditions, 
including power based on measured torque are compared 
and typical results are shown. A large increase in the power 
recovery ratio is confirmed. 
It is important to understand the turbine internal condition 

during on line wash for increasing wash effectiveness and 
to optimize on line wash procedure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a typical case of on line wash for investigation of 
thermodynamic condition in flow path, the full condensing 
steam turbine shown in Figure 37 is selected.   
The expansion curve during of this steam turbine during on 
line wash is shown in Figure 38 on i-s chart, according to 
this curve, the moisture for each stage can be estimated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35 Advantage for combination of Wide Pitch, 
All ISB and On-line Washing        

Figure 37 Typical Full Condensing Steam Turbine  
for On-line Washing 

Figure 38 Expansion Curve during On line Wash 
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Top graph of Figure 39 shows the change of operation 
conditions in decreasing inlet temperature by injecting 
boiler feed water. In this case, inlet steam flow is reduced 
from normal condition to have a safety margin and 
minimalize any risk and normally 10% steam flow 
reduction is recommended. During deceasing inlet steam 
temperature from 389 deg.C to 273 deg.C, there are a 
number of distinct conductivity spikes and it is seemed that 
the position of the moisture point inside the turbine moves 
across more than one wheel and diaphragm or it 
concentrates more locally around one row position. also is 
showing the regain that we have made in the wheel 
chamber pressure. After returning to full load condition, 
the after 1st stage pressure has recovered approximately 
400KPA after completion of wash. 
Bottom of this graph shows the effect of removing fouling 
has on thrust bearing temperature and axial position of 
rotor. It is observed that the majority of temperature 
decline in active thrust bearing is occurring earlier than 
when wheel chamber pressure is starting to improve.  
The axial position of the rotor has also moved 3mils back 
after cleaning of rotor and the thrust bearing pad metal 
temperature goes down from 101 deg.C to 78 degC.  
 
CONCLUSIONS 
For mechanical drive steam turbines, the investigation 
results of corrosion fatigue phenomena in the transient 
zone have been introduced including basic phenomena on 
the expansion line and actual design and damage 
experience. These results were analyzed from the     
standpoint of stress intensity during the start of cracking. In 
order to resolve these problems, preventive coating and 
blade design method against fouling and corrosive 
environments have been developed. Detailed evaluation 

test results for coating performance use a unique test 
procedure simulating fouling phenomena and washing 
conditions. Finally a successful modification of internals  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and on-line washing results on site were introduced. 
Following the results of this study and the evaluation tests, 
a PTFE Ni-P hybrid coating has been applied to the actual 
blades for prevention of steam turbine efficiency 
deterioration. Other improvements including online wash 
and wide pitch nozzles have been applied systematically. 
As a result, the turbine integrity and performance can be 
maintained the same as the original machine throughout 
long-term operation. 
In addition, the detail investigation of steam turbine 
internal condition during on line wash were conducted in 
terms of thermodynamics, necessary moisture, the thrust 
load change and vibration related to washing condition 
based on typical on line wash trend data.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39 Operation Trend Data Summarized during Online Wash 
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Appendix 
 
Strength Analysis and Evaluation in comparison with 
Operation Experience 
The results of static stress and dynamic stress analysis for 
the actual failed blade shown in Figure 3 are shown in 
Figure 40 to Figure 42. The tenon has the maximum peak 
static stress at its outside, which is a different location from 
the actual crack initiation point. However, the location of 
crack initiation has a minimum safety margin and this 
margin has to be evaluated according to both static and 
dynamic stress on a Goodman diagram. To analyze the 
dynamic vibration stress, a 3D solid model is made for one 
group of blades, including the rotor disk to take account of 
the couple modes of the blades and disk as one vibration 
system. The natural frequency for each mode is calculated 
and plotted on a Campbell diagram as shown in Figure 41.  
 
 
 
 
 
 
 
 
 
 
 

Figure 40 Static Stress Analysis Result 
 
The resonance points are identified in the operation speed 
range and analyzed to determine the vibration response of 
the excitation force at resonance point（7）. In case of finitely 
grouped blades, the vibration stress becomes largest at 
resonance with lowest frequency harmonic tangential 
in-phase mode. The excitation force is given on the blade 
profile calculated from pressure distribution of a steady 
CFD analysis and stimulus of fluctuation level per steady 
level and harmonic number. The vibration response is 
calculated in relation to system damping. The vibration 
stress profile (contour) is shown in Figure 42 and the 
maximum peak vibration stress is observed on the inside of 
the tenon and stress concentration point of corner radius, 
which is the same as the actual crack initiation point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41 Campbell Diagram and Operation Range 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 42 Vibration Stress Analysis Result for 1st Mode 
 
The same standard blades have been applied to over 80 
turbines, which have all been in long-term operation. 
Among them, three turbines have the same blade damage. 
The static stress and vibration stress for each turbine is 
plotted on the Goodman diagram shown in Figure 43,  
comparing the allowable fatigue limit corresponding to a 
wet and dry transient Wilson zone（8）. Considering the fact 
that vibration stress is very small and lower than this limit, 
and this blade damage happened after long-term operation, 
it is expected that the blade damage is caused by a 
corrosive environment related to unsuitable water and 
steam quality control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Chemical Materials Deposition on Flow Path and 
Performance Deterioration 
During steam turbine continuous long-term operation, 
steam contaminants, such as silicate and sodium, deposit 
on the internals as solids.  This occurs under certain 
operating conditions related to steam pressure and 
temperature for each of the stages. These contaminants foul 
the surfaces of nozzles and blades and gradually build up 
during steam turbine operation.  Figure 44 shows the 
fouling condition after 7 years of continuous operation.   
 
 
 
 
 

Figure 43 Design Experience on Goodman Diagram 
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Figure 44 Deposit Condition of LP Section 

     
The composition and characteristics of the fouling 

materials are different along the steam path from the 
high-pressure stages to the low-pressure side. Under these 
fouling conditions, the pressure profiles across the nozzles, 
blades, and throat areas increase. These profiles in turn 
result in the deterioration of turbine performance, and it 
will continue to do so over time if left unattended. The 
authors have calculated the relationship between after stage 
pressure increase and efficiency change (loss) due to the 
fouling thickness within the high and low pressure sections.  
When fouling happens and the nozzle profile has deposits, 
the nozzle area is reduced, and the nozzle exit speed and 
velocity ratio per stage change. This velocity ratio is 
directly related to stage efficiency and overall efficiency of 
the HP and LP section. The typical calculation result for 
the HP section is shown in Figure 45. According to this 
thermodynamic calculation and analysis, the HP section 
efficiency is more sensitive than that of the LP section 
where each stage profile has the same fouling thickness.       
Overall efficiency change and after stage pressure change 
depend on what stage has deposits and its fouling 
thickness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Moisture Profile during Reduction of Inlet 
Temperature   
Figure 46 shows the calculated moisture change of 
internals when inlet temperature deceases from normal to 
the lowest during washing. At the normal inlet steam 
temperature, only 6th to 8th stage locate on wet zone and 
maximum moisture is about 9%. In case of the lowest inlet 
temperature 260deg.C, all stages are located lower than 
saturated line and the maximum moisture of last stage 
becomes 17%. The on line wash condition have to be 

optimized in considering what stage has the fouling and 
what is the allowable limit of high moisture in terms of 
erosion damage and countermeasures for protection  such 
as ceramics coating, PTA power welding and stainless steel 
diaphragms . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Relationship between Inlet Temperature, Moisture at 
Each Stage and Conductivity Spikes 
In Figure 47, these relations are shown including time 
delay of axial thrust displacement decrease (thrust force 
decrease) and after 1st stage pressure recovery.      
In case of Inlet temperature going down to about 340 deg.C, 
L-2 L-1 and L-0 stage nozzles/blades are washed, in 
addition, LP end (long reaction blades) thrust force is 
larger than that of HP front end (short impulse blades). 
Accordingly, total axial thrust force decreases. After 1st 
stage pressure is dominantly affected by the 2nd and 3rd 
stage nozzles/blades area reduction. 
In case of Inlet temperature going down to the range of 
about 310 to 280 deg.C, the 2nd and 3rd stage 
nozzles/blades are washed and in this inlet temperature 
range, after 1st stage pressure decreased. Minimum 
moisture for washing is expected 2 to 3% and when 
moisture of each stage increases cross this threshold, 
conductivity spike occurred. 
 
Thrust Force Reduction and Axial Displacement after 
Online Wash 
Figure 48 shows change of axial displacement and pad 
metal temperature related to thrust bearing performance. 
We expect thrust force deceases from 20-25 kgf/cm2 of 
bearing pressure (intensity) to 10 kgf/cm2 of normal as 
designed. Almost change of axial displacement (about 100 
micron meter) is elastic deflection of leveling plates and oil 
film thickness increases by 30 micron meter as your 
pointing out. 
 
 
 
 
 

Figure 46 Moisture Profile during Reduction of Inlet 
Temperature 
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Vibration phase change and correspondence to 
conductivity spikes during online washing 
Rotor response is summarized in Figure 49, 1 time 
vibration phase increase / decrease has the relationship 
with conductivity spikes (up/down). In case of 1 time 
vibration, amplitude does not change, only phase changes. 

On the contrary, in case of 2 time vibration, amplitude 
changes and phase does not change. It is expected that 
excitation force in rotating in drain or mist and unbalance 
caused by partial washing during washing start affect rotor 
response. The detail investigation is necessary.  
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