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Introduction and Background

There is a plethora of experimental investigations aimed at measuring the rotordynamic coefficients
of a labyrinth seal (Benckert and Wachter, 1980; Wright, 1983; Nelson et al., 1986; Bolleter et al., 1987;
Wagner et al., 2009; Ertas et al., 2012; Vannini et al., 2014; Arthur and Childs, 2015). Almost always, how-
ever, some information needed for the computational fluid dynamic (CFD) simulation is missing either
because it was not measured or because it was not reported. The chance of being able to obtain all the data
needed for the CFD simulation decreases as the time interval between the experiment and the computational
simulation increases, even if both activities are conducted in the same laboratory.
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Figure 1: Computational domain for the labyrinth seal (left), direct stiffness vs. pressure ratio (right).

Significant advances were made recently

Figure 2: Partial cut-view of stator assembly showing critical
measurement locations and instrumentation.

in the CFD rotordynamic analysis of labyrinth
seals using the Reynolds-averaged Navier–Sto-
kes (RANS) equations (Moore, 2003). In spite
of the progress, there are still differences be-
tween the experiments and computations. Be-
cause the RANS models are dependent on
the turbulence model, attempts were made to
use instead Large Eddy Simulations (LES) in
order to numerically solve the larger turbu-
lent scales (Tyacke et al., 2011) rather than
to model them. The computational cost of
the LES simulations, however, exceeds that
of the RANS simulations by at least an or-
der of magnitude, making LES undesirable

for design. We have shown that a careful RANS simulation yields similar results to LES (Liliedahl et al.,
2011), but a much smaller computational cost. Irrespective whether one uses RANS or LES solvers, the
CFD computations must be verified and validated. While the verification is done typically by proving the
solution is grid independent, the validation must be done against experimental results. Ideally the generation
of experimental and computational data for validation should be done simultaneously, to make sure that all
required data are measured and available for the numerical simulation.
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The goal of this two-year project is to concurrently conduct an experimental and computational investi-
gation that will both measure and predict the rotordynamic coefficients of a labyrinth seal. In the first year,
CFD simulations, shown in Fig. 1, using geometries and operating conditions representative of centrifugal
compressor applications were used to help design the experiment and required test set up. Specifically, the
simulations assisted in determining the instrumentation location. In addition, the information required for
the CFD simulation was identified and communicated to the experimental investigators.

Proposed Work 2019-2020

The selected seal geometry will be tested in the component-level seal test rig (Childs and Hale, 1994).
This facility is capable of testing annular seals up to 5 inches in diameter, at speeds up to 20,000 rpm with
a maximum supply pressure of 70 bar, and multiple pressure ratios by controlling seal discharge pressure.
Static and dynamic tests will be conducted to identify the seal force coefficients. The measurements will
include flow velocity, temperature, static and dynamic pressures, acceleration, displacement and input force,
as shown in Fig. 2. Subsequently, the measured parameters will be directly compared to CFD simulations.
The benchmarked CFD model will then be used to optimize labyrinth seal and swirl brake geometries
leveraging additive manufacturing.

Deliverables 2019-2020

1. Operating conditions and experimental measurements of the labyrinth seal.

2. Updated computational grids, updated UNS3D input files, simulation results, and accuracy assessment
for the simulations of the labyrinth seal.

3. Comparisons between experimental and computational results.

Budget 2019-2020

Support for graduate student (20 hours/week) $26,400
Fringe benefits and insurance $5,755
Tuition and fees $13,275
Hardware and instrumentation $4,170
Total $50,000
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