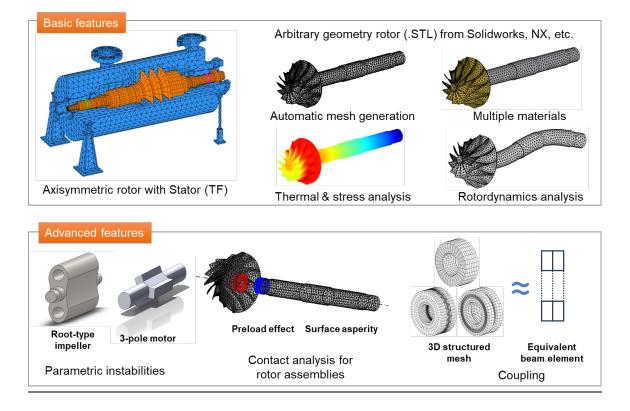

TRC CONTINUATION PROPOSAL 2022-2023 Solid Modeler Rotordynamics: High Fidelity, Shaft Dynamics, Stress and Thermal Modeling (Project # 00071)

by Baik Jin Kim brian3093@tamu.edu and Dr. Alan Palazzolo a-palazzolo@tamu.edu

INTRODUCTION AND JUSTIFICATION

This project provides software models of rotating assemblies with non-beam-like behavior, using 3D solid element modeling and solid model inputs. For example, non-beam-like behavior occurs at internal butt, Hirth, or Curvic coupling of a rotor fastened together with a preloaded through-bolt. The coupling introduces a local lateral flexibility that can affect critical speed and general rotordynamic response, yielding an inaccuracy problem in a



Compressor turbine rotor

conventional beam model. In these instances, a 3D solid finite element model with accompanying rotordynamic analyses is recommended to produce reliable predictions of critical speed, log dec, parametric instability, etc. In a traditional beam-based rotordynamic model, this can also be done indirectly using equivalent beam properties, which is equivalent Young's modulus and transverse shear effect, obtained from the 3D FEM.

DELIVERABLES

- Standalone 3D Solid Finite Element Rotordynamics software which runs under the EXCEL system umbrella without any other software (ANSYS, Fortran ...) required.
- Geometric input obtained from any solid model software outputs (SolidWorks, Catia, ...) or by users.
- Multiphysics solid finite element analysis (thermal/structural/rotordynamics), such as predictions of natural frequency, critical speed, mode shape, parametric instability, with arbitrary shape geometries with multiple materials and connections (butt joint, Hirth, Curvic coupling) using GW contact theory.
- Calculating equivalent Young's modulus and equivalent transverse shear effect at mating surface that can be used for the equivalent beam model.

PROPOSED WORK

1) Fetter rings radial contact

(Holding discs onto shaft)

- a. Natural frequency, critical speed prediction
- b. Validation with the test data

2) Rabbet joint

a. radial contact + axial contact

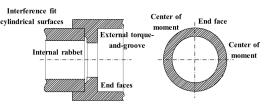
3) Asymmetric temperature distribution on shafts

a. Simulation / Exp. for vibration analysis due to temperature asymmetry (bifurcation of natural frequency expected)

4) Micro slip modeling, internal friction effect modeling, rub

- a. Friction due to relative motion from shrink fit
- b. Relationship between microslip and internal friction
- c. Self-excitation instability
- 5) Shaft with composite material
 - a. Compare ANSYS penalty method with current SFER GW method
- 6) Combination with Machine Learning $E_{coupling} \& \Phi_{coupling}$
- 7) Newkirk effect
- 8) Improve software computational efficiency and Excel user interface
 - a. Develop a user interface for interacting with XLTRC² rotor input

STATUS OF CURRENT WORK


Standalone Solid Modeler TRC Software

- A user-friendly EXCEL User Interface based simulation environment
- Axisymmetric 2D element/10-node quadratic tetrahedron/8-node hexahedron finite element rotor modeling capability
- Multiphysics analysis for thermal/structural/high-fidelity-rotordynamic analysis (natural frequency, log dec, parametric instability and etc.)
- Parametric instability evaluation algorithm
- Butt-joint modeling capability with different levels of surface roughness and preload
- Butt-joint experimental test data
- Hirth / Curvic coupling modeling capability with different parameters, levels of surface roughness, and preload
- Hirth / Curvic coupling experimental test data
- $E_{coupling}$ & $\Phi_{coupling}$ of Butt-joint, Hirth and Curvic coupling for Equivalent beam model

BUDGET FOR 2020-2021

1 PhD student (\$2,250/mo. Salary + \$300 insurance) × 12 months, tuition and fees \$18,000, machining cost and supplies \$1,400, **Total Cost: \$ 50,000**

Fig. 1 Fetter ring

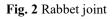


Fig. 3 Asymmetric Temp.

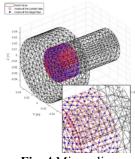


Fig. 4 Micro slip

Fig. 5 Composite shaft